Juan Terrón Universidad Autónoma de Madrid DIS97, Chicago, $14^{th} - 18^{th}$ April, 1997.

Diffractive Production of Charm and Jets at HERA

ZEUS Collaboration

Diffractive Hard Processes

- Diffraction: successful (and simple!) phenomenological description of soft diffractive reactions in terms of *Pomeron* exchange.
- Need to understand diffraction in terms of QCD degrees of freedom, i.e., quarks and gluons.
- How? by probing short distances in diffractive processes. This can be accomplished by measuring large- E_T lepton, jet, charm an production.

Diffractive Hard Processes:

→ HERA provides the best place!!

Deep Inelastic Scattering at $Q^2 > 8 \text{ GeV}^2$

Charm Production in Deep Inelastic Stattering at $Q^2>10~{
m GeV}^2$

Photoproguetan of two Jets with $E_T^{jet}>6~{
m GeV}$

Hard Scales

 Photoproduction c rapidity gap: п a large

$$E_I^{pet_i} = 8.2 \text{ GeV}$$
, $E_I^{pet_2} = 6.2 \text{ GeV}$; $\eta^{pet_3} = -4.7$, $\eta^{pet_4} = 0.32$; $x_{\gamma}^{OBS} = 0.89$

resolved candidate

$$E_I^{jet_1} = 14.1 \text{ GeV}; E_I^{jet_2} = 14.0 \text{ GeV}$$
 $\Rightarrow e^{-b} = -0.35; x_n^{OBS} = 0.65$

Observation of Diffractive High- E_T Photoproduction:

- ullet Rate for Large-Rapidity-Gap events in Deep Inelastic Scattering and High- E_T Photoproduction Larger (≥ 10) than expectations from Standard non-diffractive Monte Carlo's.
- The characteristics of the Large-Rapidity-Gap events $(W,\,Q^2,\,M_X)$ suggested a diffractive production mechanism mediated by $I\!\!P$ omeron exchange and pointed to a leading twist contribution.

_

Inclusive Measurement of Diffractive Deep Inelastic Scattering

$$e(k) + p(P) \rightarrow e'(k') + p(P') + anything$$

KINEMATICS:

4 VARIABLES

$$x = \frac{Q^2}{2P \cdot q}; \ Q^2 = -q^2 = -(k - k')^2; \ x_{IP} = \frac{(P - P') \cdot q}{P \cdot q}; \ t = (P - P')^2$$

$$\beta \equiv \frac{x}{x_{IP}}$$

Longitudinal Momentum of **IP** carried by struck parton

Extraction of $F_2^{D(3)}(oldsymbol{eta},oldsymbol{Q^2},oldsymbol{x_{I\!\!P}})$ (integrated over t) via

$$\frac{d^3\sigma_{ep}(diff)}{d^3dQ^2dx_{IP}} = \frac{2\pi\alpha^2}{\beta Q^4} [1 + (1-y)^2] F_2^{D(3)}(\beta, Q^2, x_{IP})$$

The results are consistent with factorization

$$F_2^{D(3)}(eta,Q^2,x_{I\!\!P})=rac{1}{x_{I\!\!P}^a}f(eta,Q^2)$$

in the measured range:

$$8 < Q^2 < 100 \text{ GeV}^2$$
;

$$0.1 < \beta < 0.8$$
; $6.3 \cdot 10^{-4} < x_{IP} < 10^{-2}$

Diffractive Structure Function $ilde{F}_2^D(eta,Q^2)$

$$ilde{F}_{2}^{D}(eta,Q^{2}) \equiv \int_{6.3\cdot10^{-4}}^{0.01} dx_{I\!\!P} F_{2}^{D(3)}(eta,Q^{2},x_{I\!\!P})$$
ZEUS 1993

- ullet At fixed Q^2 : relatively flat β dependence.
- ullet At fixed eta: approximately independent of Q^2 .

Deep Inelastic Scattering on charged pointlike particles (quarks!) in the colorless object (IP).

Gluon Content of Colorless Object?

- At leading order QCD, diffractive deep inelastic scattering probes the quark content of the **Pomeron**.
- Gluons in the **P**omeron? 3 spectrum? (Momentum Sum Rule CANNOT be applied).
- Study of reactions sensitive to gluon content in the **P**omeron:

Measurement of Dijet Cross Sections in Photoproduction with a Large Rapidity Gap

$$e+p \xrightarrow[Q^2 \sim 0]{} (\mathrm{jet}+\mathrm{jet}+X_T)+e+p$$

KINEMATIC REGION

- ullet 0.2 < y < 0.85 (134 GeV $< W \equiv \sqrt{s_{\gamma p}} < 277$ GeV)
- ullet $Q^2 < 4 \; ext{GeV}^2 \; ext{(median} \; Q^2 pprox 10^{-3} \; ext{GeV}^2)$
 - \bullet $\eta_{max} < 1.8$

JET ALGORITHM

- Cone algorithm in $\eta-\phi$ space with radius $R=\sqrt{(\Delta\eta)^2+(\Delta\phi)^2}=1$ unit based on transverse energies (Snowmass Convention).
- At least two jets with $-1.5 < \eta^{jet} < 1$ and $E_T^{jet} > 6$ GeV for each jet.

$$\phi = AZIMUTH ; \eta = -log(tan \theta_2)$$

Measured Cross Sections:

$$rac{d\sigma}{d\eta^{jet}} \quad rac{d\sigma}{dE_T^{jet}} \quad rac{d\sigma}{dW} \quad rac{d\sigma}{dx\gamma}$$

- Diffractive hard photoproduction Monte Carlo, POMPYT, used to correct back to the hadron level.
- \bullet Non-diffractive background subtracted (using PYTHIA Monte Carlo) and proton dissociation contribution (estimated to be $15\pm10\%$) have been subtracted from the data.
- Improvements with respect to previous measurements (ZEUS 1993):
- ZEUS 1994 Data 2.6 pb⁻¹ (five-fold morease in statistics)
- → Dijet events: study of resolved and direct contributions.

Measurement of Dijet Cross Sections in Diffractive Photoproduction

Models for Diffractive Hard Scattering

Proneered by Ingelman, Schlein (35): Berger, Collins, Soper, Sterman (187): Donnachie Landshoff (187): ...

- Based on perturbative QCD and Regge theory.
- Based on Pomeron exchange (account only for single diffractive).
- Generally assume factorization

$$f_{I\!\!P}(x_{I\!\!P},t)*(| ext{MatrixElements}|^2*f_i|_{I\!\!P}(eta,\mu^2))$$

- \rightarrow **P**omeron flux extracted from data on soft hadronic interactions.
 - → Matrix elements computed using perturbative QCD.
 - \rightarrow Parton densities in the **P**omeron (universal?).
- POMPYT (Bruni, Ingelman; factorizable model) for diffractive hard photoproduction:

$$egin{aligned} \sigma_{dir}^{jet} &= \pm oldsymbol{dyf_{\gamma/e}(e)} \int iggl) oldsymbol{dx_Pdtf_P(x_P,t)} \cdot \\ &= \sum_i deta_i + d\hat{p}_i^2 rac{d\hat{\sigma}}{d\hat{p}_i^2} oldsymbol{f_{i/P}(eta,\mu^2)} \end{aligned}$$

Evidence for the Resolved and Direct Contributions in Diffractive Hard Photoproduction:

ZEUS 1994 Preliminary

Monte Carlo			Zeus Data		
	$eta f_{g/I\!\!P}(eta) \sim eta (1-eta)$				
	resolved contribution	: _	E. Scale 3%		
	direct contribution		Stat. errors		
	non-diffractive		Syst. errors		

QCD Fits to ZEUS Diffractive Measurements

- In analogy with the determination of the parton densities in the proton using different processes.
- ullet Global analysis of ZEUS measurements on $ilde{F}_2^D$ and dijet cross sections in diffractive photoproduction
 - ightarrow $ilde{arGamma}_2^D$ (DIS) sensitive to quark content of $I\!\!P$.
- $\rightarrow d\sigma/d\eta^{jet}$, ... (photoproduction) sensitive to quark and gluon content of **P**.

using parton densities in **IP** evolved according to DGLAP equations at NLO-QCD with 3 flavours (CTEQ package).

```
(suggested by J.C. Collins of a first form) (195) 3182)
```

- Donnachie, Landshoff form for the IP flux.
- No momentum sum rule applied.

- |

QCD Fits to ZEUS Diffractive Measurements

- Fits to both sets of ZEUS diffractive measurements with different guesses for the initial distributions of $f_{q/I\!\!P}(\beta,Q_0^2)$ $(q=u,\bar{u},d,\bar{d})$ and $f_{g/I\!\!P}(\beta,Q_0^2)$ at $Q_0^2=4$ GeV² in order to determine:
- \rightarrow relative contribution of quarks and gluons, $c_g \equiv$ fraction of the momentum of the $I\!\!P$ carried by partons due to gluons in $I\!\!P$.
- ightarrow possible contribution from a singular momentum density (peaked at $eta \sim 1$) component of gluons in $I\!\!P$.

Comparison of the fits with ZEUS $ilde{\mathbf{F}}_2^D$ data

$eta f_{q/I\!\!P}(eta,oldsymbol{Q_0^2})$	$oldsymbol{eta f_{g/I\!\!P}(eta,oldsymbol{Q}_0^2)}$	$oxed{C_g}$
		:
	$b\beta(1-\beta)$	0.87
$a\beta(1-\beta)$	$b\beta(1-\beta)$	0.87
$a\beta(1-\beta)$	$b\beta^8(1-\beta)^{0.3}$	0.69

Comparison of the Fits with ZEUS Dijet Cross Sections in Diffractive Photoproduction

$oldsymbol{eta f}_{i/I\!\!P}(oldsymbol{eta},oldsymbol{Q_0^2})$	$eta f_{g/I\!\!P}(eta,Q_0^2)$	C_{g}	Zeus Data
$a\beta(1-\beta)+c(1-\beta)^2$			
$\alpha\beta(1-\beta)+c(1-\beta)^2$	$b\beta(1-\beta)$	0.87	E. Scale 3%
$a\beta(1-\beta)$	$b\beta(1-\beta)$	0.87	Stat. errors
$a\beta(1-\beta)$	$b\beta^{8}(1-\beta)^{0.3}$	0.69	Syst. errors

Inclusive Measurement of $D^{*\pm}$ Cross Sections in Diffractive Deep Inelastic Scattering

$$e + p \rightarrow D^{*\pm} + X + c + p$$

Using the decay channel:

$$D^{*+} \to D^0 \pi_s^+ \to (K^- \pi^+) \ \pi_s^+ + \text{c.c.}$$

and selecting diffractive candidates with

$$\eta_{max} < 2$$

KINEMATIC REGION

- \bullet 10 GeV $^2 < Q^2 < 80$ GeV 2
- 0.04 < y < 0.7

KINEMATIC REGION FOR $D^{*\pm}$

- \bullet $p_T(D^{*\pm}) > 1$ GeV
- $\bullet \ -1.5 < \eta(D^{*\pm}) < 1.5$

Mass Difference Distribution for Selected Samples

η_{max} and M_X^2 Distributions for Selected Samples

$D^{*\pm}$ Cross Section Measurements

- ◆ Diffractive deep inelastic scattering Monte Carlo's, RAPGAP (Jung) and Nikolaev-Zakharov, give a reasonable description of the shapes of the relevant distributions in the diffractive selected sample
 ⇒ used for acceptance corrections.
- ZEUS 1995 Preliminary
- ightarrow Cross section for Diffractive $D^{*\pm}$ production:

$$\sigma_{diff}(D^{*\pm}) = 875 \pm 248 ({
m stat.}) \, {}^{\pm 395}_{-199} ({
m syst.}) \, \, {
m pb}$$

(including proton dissociation contribution)

 \rightarrow Cross section for $D^{*\pm}$ production (no η_{max} cut):

$$\overline{\sigma_{all}(D^{*\pm})} = 3.9 \pm 0.4$$
 (stat. only) nb

• Approximately 20% of $D^{*\pm}$ in Deep Inelastic Scattering above 10 GeV² are diffractively produced.

- |

Conclusions

- Measurement of Dijet Cross Sections in Diffractive Photoproduction:
- $\to d\sigma/dx_\gamma^{OBS}$ shows evidence for resolved and direct contributions in diffractive hard processes.
- QCD fits to Dijet Cross Sections in Diffractive Photoproduction and Diffractive Structure Function in DIS \tilde{F}_2^D :
- → a model with DGLAP evolution of the parton densities in the Pomeron describes both sets of measurements
- → requiring hard momentum densities for both quarks and gluons in the Pomeron and a large contribution from gluons.
- Measurement of $D^{*\pm}$ Cross Sections in Diffractive Deep Inelastic Scattering:

$$\sigma_{diff}(D^{*\mp}) = 875 \pm 248 ({
m stat.}) \, \, \, _{-199}^{+395} \, \, {
m avst.}) \, \, {
m pb}$$

ightarrow Approximately 20% of D^{*+} in Deep Inelastic Scattering above 10 GeV 2 are diffractively produced.